Fifth Annual Conference on Carbon Capture & Sequestration

Steps Toward Deployment

Geologic Storage - Modeling

CO₂ STORAGE CAPACITY IN DEPLETED AND NEAR-DEPLETED U.S. OIL RESERVOIRS

Vello A. Kuuskraa (<u>vkuuskraa@adv-res.com</u>)
Phil Dipietro (<u>pdipietro@adv-res.com</u>)
George J. Koperna (<u>gkoperna@adv-res.com</u>)
Advanced Resources International, Inc.

May 8-11, 2006 • Hilton Alexandria Mark Center • Alexandria, Virginia

OUTLINE FOR DISCUSSION

- 1. Attributes of Oil Reservoirs
- 2. An Initial Perspective of CO₂ Storage Capacity and CO₂-EOR Potential
- 3. Expanding CO₂ Storage
- 4. Revised Estimates of Usable CO₂ Storage Capacity
- 5. Summary

ATTRIBUTES OF OIL RESERVOIRS

Existing depleted and near-depleted oil reservoirs have numerous attributes that make them preferred sites for geological storage of CO₂.

- 1. <u>Established Secure Trap.</u> An oil reservoir has accumulated and held fluids for millions of years, thus providing:
 - Confidence in the integrity of the reservoir seal
 - Assurance of permanence of the fluid trap

As such, CO₂ injected into an oil reservoir, as long as the injected CO₂ volumes do not exceed the spill point, will likely remain "permanently" trapped and stored.

ATTRIBUTES OF OIL RESERVOIRS (Cont'd)

- 2. <u>Value-Added Products.</u> In geologically favorable settings, injecting CO₂ into a near-depleted oil reservoir can mobilize and recover significant volumes of additional oil using enhanced oil recovery technology (EOR):
 - Recent work by Advanced Resources International for U.S. DOE's Office of Oil and Natural Gas shows that nearly 89 billion barrels of additional oil may be technically recoverable using CO₂ enhanced oil recovery (CO₂-EOR). Advanced ("next generation") technologies would add to this total.
 - This would provide revenues for offsetting some (or all) of the costs of storing CO_2 .
 - The U.S. and many other parts of the world have large, mature oil fields with reservoir properties favorable for combining storage of CO₂ with CO₂-EOR.

ATTRIBUTES OF OIL RESERVOIRS (Cont'd)

- 3. <u>Existing Infrastructure</u>. In many cases, much of the essential requirements and infrastructure (such as wells, surface facilities, land access, mineral rights) already exists for storing CO₂. As such:
 - The initial capital requirements for establishing a CO₂ storage facility would be lower than with an alternative option.
 - The permitting, land disturbance and public acceptance aspects of CO₂ storage would be more favorable in areas already developed and comfortable with injection of fluids into the subsurface.

ATTRIBUTES OF OIL RESERVOIRS (Cont'd)

While depleted oil fields are an attractive, early option for CO₂ storage, particularly with CO₂-EOR, the perception is these oil fields offer a relatively small volume of CO₂ storage capacity as stated in the IPCC Special Report on Carbon Dioxide Capture and Storage:

"Enhanced oil recovery operations have the lowest capacity of all forms of CO_2 geologic storage, estimated globally at 61 to 123 billion tons of CO_2 "

"... it is important to note that CO_2 EOR, as practiced today, is not engineered to maximize CO_2 storage. In fact, it is optimized to maximize revenues from oil production, which in many cases requires minimizing the amount of CO_2 retained in the reservoir. In the future, if storing CO_2 has an economic value, co-optimizing CO_2 storage and EOR may increase capacity estimates."

AN INITIAL PERSPECTIVE OF CO₂ STORAGE CAPACITY AND CO₂-EOR POTENTIAL

Given the perception that depleted oil reservoirs offer only limited capacity for storing CO₂, the presentation addresses two key issues:

- 1. How might one establish a reliable assessment of CO₂ storage capacity with "value-added" oil production using today's enhanced oil recovery technology?
- 2. What opportunities might a "next generation" set of technologies offer for maximizing the CO₂ storage capacity (and oil recovery) in these oil reservoirs?

AN INITIAL PERSPECTIVE OF CO₂ STORAGE CAPACITY AND CO₂-EOR POTENTIAL (Cont'd)

Our company, Advanced Resources International, recently completed a series of ten "basin studies" that provide an initial perspective on the CO₂ storage potential from combining CO₂ storage and CO₂-EOR. The studies:

- Cover 22 of the oil producing states plus offshore Louisiana,
- Include 1,581 large (>50 MMBbls OOIP) oil reservoirs, accounting for two thirds of U.S. oil production,
- Estimated CO₂ storage capacity using a streamline reservoir simulation and an extensive data base of reservoir properties.

These reports are available on the U.S.

Department of Energy's web site at
http://www.fe.doe.gov/programs/oilgas/eor/Ten_Basi-n-Oriented_CO2-EOR_Assessments.html

U.S. BASINS/REGIONS STUDIED FOR FUTURE OIL RECOVERY AND CO₂ SEQUESTRATION POTENTIAL FROM CO₂-EOR

AN INITIAL PERSPECTIVE OF CO₂ STORAGE CAPACITY AND CO₂-EOR POTENTIAL (Cont'd)

The market for "EOR-Ready" CO_2 is on the order of 20 billion metric tons of CO_2 . About 80% of this would become stored as part of CO_2 -EOR. Since currently known natural CO_2 sources hold only about 2 billion metric tons, CO_2 -EOR offers a major market for industrial CO_2 .

	Recoverable Oil	Purchased CO ₂		Stored CO ₂
	(Billion Barrels)	(Tcf)	(Billion Tonnes)	(Billion Tonnes)
Technically Recoverable	89	377	20	16
Economically Recoverable				
• Mod Oil Price/High Cost CO ₂ *	23	85	4	3
• High Oil Price/Low Cost CO ₂ **	47	188	10	8

^{* \$30} per bbl oil price, CO₂ cost of \$1.50/Mcf, ROR of 15% before tax.

^{** \$40} per bbl oil price, CO₂ cost of \$0.80/Mcf, ROR of 15% before tax.

USABLE CO₂ STORAGE CAPACITY IN OIL FIELDS FAVORABLE FOR CO₂-EOR ("State-of-the-Art" CO₂-EOR)

The usable CO₂ capacity for oilfields favorable for CO₂-EOR (under "state-of-the-art" CO₂-EOR technology) is provided below by basin/area:

	Usable CO ₂ Storage Capacity		
Basin/Area	(Tcf)	(million tonnes)	
Alaska	42.1	2,226	
California	19.7	1,042	
Gulf Coast	27.6	1,458	
Louisiana (Offshore)	23.5	1,243	
Mid-Continent	29.8	1,574	
Illinois and Michigan	4.6	243	
Permian	78.1	4,126	
Rocky Mountain	22.5	1,192	
East and Central Texas	50.8	2,688	
Williston	10.1	532	
TOTAL	308.9	16,325	

EXPANDING CO₂ STORAGE

The volumes of CO₂ purchased for (and stored by) CO₂-EOR, as set forth in the ten "basin studies" assume:

- The primary objective is enhancing economic oil recovery (minimizing costs while optimizing oil production).
- No economic value or benefit is placed on "permanently" storing CO₂.

As such, the above CO_2 requirements and storage volumes represent a minimum. The remainder of the paper examines how and by how much this minimum volume could be expanded.

To examine the potential for expanding CO₂ storage in depleted oil fields, we use a case study of a large, 340 million barrel (OOIP) Gulf Coast oil reservoir. It has a main pay zone (above the producing oil-water contact), an underlying transition/residual oil zone, and a strong bottom water aquifer.

This reservoir offers 2,710 Bcf (143 million tonnes) of theoretical CO₂ storage capacity.

- Main Pay Zone:
 - Depth - 14,000 feet
 Net Pay - 325 feet
 - Porosity - 29%Initial Pressure - 6,620 psi
- Transition/Residual Oil Zone (130 feet)
- Underlying Saline Aquifer (195 feet*)

^{*}Within the spill point of the reservoir structure.

First, this Gulf Coast oil reservoir is produced using "state-of-the-art" CO₂-EOR project design, targeting the main pay zone (MPZ), with vertical wells, and injecting 1 HCPV of CO₂ with a 1:1 WAG (including both purchased and recycled CO₂).

The CO_2 storage and oil recovery results from this CO_2 -EOR design are as follows:

- CO₂ Purchased - 424 Bcf (22.4 million tonnes)
- Oil Recovery - 64 million barrels
- CO₂/Oil Ratio - 6.6
- CO₂ Stored* - 350 Bcf (18.6 million tonnes)
 *CO2 storage is 82% of purchased CO₂.

Under this design, only about 13% of the theoretical storage capacity (available pore space) in the reservoir is used for CO_2 storage.

Next, this Gulf Coast oil reservoir is produced using "next generation" CO₂-storage and CO₂-EOR project design. This alternative design includes:

- Conducting a gravity-stable, vertical CO₂ injection with horizontal wells.
- Targeting the main pay zone plus the transition/residual oil zone and the underlying saline aquifer.
- Injecting continuous CO₂ (no water)
- Continuing to inject CO₂ after completion of oil recovery, until maximum allowed reservoir pressure is reached.

Considerably more CO_2 storage is possible in this reservoir with "next generation" CO_2 -EOR and storage design. An added bonus is that oil recovery is also increased.

	MPZ	TZ/ROZ	Aquifer	TOTAL
CO ₂ Stored (Bcf)				
• Bcf	1,150	410	500	2,060
 Million Tonnes 	61	22	26	109
Oil Recovery (million barrels)	112	68		180

Under this scenario, 76% (instead of 13%) of the reservoir's theoretical storage capacity is used for CO_2 storage.

Oil recovery is 180 million (instead of 64 million) barrels, providing an additional 116 million barrels.

Weyburn Enhanced Oil Recovery Project

(An Operating Project Maximizing Oil Recovery and CO, Storage)

The Weyburn Advantage

- Largest CO₂ EOR project in Canada:
 - OOIP 1.4 Bbbls
 - 155 Mbbls incremental
- Outstanding EOR response
- World's largest geological sequestration project
 - 2.4 MMt/year (current)
 - 7 MMt to date
 - 23 MMt with EOR
 - 55 MMt with EOR/sequestration

CO₂ Storage Capacity and Distribution Predictions and the Application of Economic Limits

REVISED ESTIMATES OF USABLE CO₂ STORAGE CAPACITY

The insights gained from the case study and the Weyburn experience are used to provide a revised estimate of CO₂ storage capacity in depleted domestic oil reservoirs.

The revised estimate assumes that: (1) "next generation" CO₂-EOR technology is employed (in reservoirs favorable for this technology) and (2) that storing CO₂ becomes an equal objective with recovering oil. Under these two assumptions, the revised CO₂ storage capacity in depleted domestic oil fields is as follows:

- Oil fields favorable for CO₂-EOR: 52 billion metric tons
- Other oil fields (not favorable for CO₂-EOR): 23 billion metric tons*
- Total U.S. CO₂ storage capacity in depleted oil fields: 75 billion metric tons

^{*}Estimated by extrapolation from studied oil fields.

USABLE CO₂ STORAGE CAPACITY IN OIL FIELDS FAVORABLE FOR CO₂-EOR

("Next Generation" CO₂-EOR/CO₂ Storage Technology)

The CO₂ storage capacity in oil fields favorable for CO₂-EOR ("next generation" CO₂-EOR technology that optimizes oil recovery and CO₂ storage), is provided below by basin/area:

	Usable CO ₂ Storage Capacity		Theoretical Capacity	
Basin/Area	(Tcf)	(million tonnes)	(Tcf)	(million tonnes)
Alaska	133.7	7,064	310.3	16,398
California	68.2	3,603	134.1	7,087
Gulf Coast	88.4	4,672	155.3	8,211
Louisiana (Offshore)	81.0	4,282	142.9	7,554
Mid-Continent	94.4	4,991	222.2	11,747
Illinois and Michigan	17.6	931	27.0	1,429
Permian	248.2	13,119	355.4	18,784
Rocky Mountains	62.3	3,291	91.3	4,828
East and Central Texas	168.5	8,904	306.9	16,219
Williston	27.9	1,476	43.4	2,293
TOTAL	990.1	52,332	1,788.9	94,549

COMPARISON OF USABLE AND THEORETICAL CO₂ STORAGE CAPACITY

Under "state-of-the art" CO₂–EOR, where oil recovery is the primary objective, only 17% of the overall theoretical storage capacity offered by depleted U.S. oil fields is used, consistent with the case study.

With application of "next generation" CO₂-EOR technology, that combines both CO₂-EOR and CO₂ storage, a much higher percentage, 55%, of the overall theoretical storage capacity is used:

- Theoretical Storage Capacity: 95 billion metric tons
- Useable CO₂ Storage Capacity:
 - "State-of-the-Art":16 billion metric tons (17% theoretical)
 - "Next Generation": 52 billion metric tons (55% theoretical)

SUMMARY

Depleted oil reservoirs have attributes that make them attractive for storing CO_2 - - secure trap; "value-added" products; and, existing infrastructure.

Using today's "state-of-the-art" CO₂-EOR only a small portion of the available CO₂ storage capacity in the oil reservoir is productively used, 16 G mt.

Applying "next generation" practices that integrate the storage of CO₂ and oil recovery, a much greater portion of the available CO₂ storage capacity becomes useable, 52 G mt.

Including oil fields, not favorable for CO₂-EOR, the total U.S. CO₂ storage capacity in depleted onshore/near-off shore oil reservoirs becomes 75 G mt.

New field discoveries and inclusion of deepwater reservoirs would add to this total.

Office Locations
Washington, DC
4501 Fairfax Drive, Suite 910
Arlington, VA 22203
Phone: (703) 528-8420

Fax: (703) 528-0439

Houston, Texas 9801 Westheimer, Suite 805 Houston, TX 77042 Phone: (713) 780-0815 Fax: (713) 780-3819

Pittsburgh, Pennsylvania 401 Wood St. Suite 900 Pittsburgh PA 15222-1824

Phone: 412-281-6568 Fax: 412-281-6747

